
In its infancy, Java was a toy for creating gadgets in web pages. Many people
did not realize the power of Java. Five years later, Java became a platform of
choice for creating almost any type of application. Applications that can run on
cellular phones, desktops, application servers, and of course, within your Web
browsers. As Sun put it: “Write once, run everywhere”.

But what about mainframes? It is a well-known fact that most of the worlds
mission critical data and applications do not reside on Windows, Linux, Solaris
or other Unix systems, but inhabit the “big iron”, IBM mainframes. Some “legacy”
applications perhaps written in COBOL 30 years ago, are still running on the
mainframe. At that time sound software engineering practices and methodologies
were not introduced.

One of the most important principles that drives application development in
today’s world is the clean separation of business logic and presentation. This
principle was rarely applied when the “big iron” legacy applications were writ-
ten. However, those applications work amazingly well (30 years of hammering
bugs!) and still remain critical. The major challenges in using those “legacy”
applications in our brave new world are: integrating with other data sources,
and bringing the user experience to today’s expectations, while keeping the
data security and reliability intact.

Opening the “glass house”
Many of those born after 1980s maybe unaware of the term “glass house”. In
the technology world, it is the well-ventilated room full of large computers,
servers, printers and tape units, with limited access to the general public.

Opening the “glass house” to the public means providing people remote access
to the mainframe data and applications. (Extending the reach.) That certainly
did not start with Java. In the beginning people were accessing mainframes
using dedicated terminals. Then two important technologies introduced change.

The first, of course, was the Personal Computer. People soon found their desk
real estate shrinking: the PC was sitting alongside with the bulky mainframe ter-
minal. They were looking suspiciously similar–a screen, a keyboard and a box.
However they were absolutely unable to exchange any data. Cumbersome work
flow processes prevailed which involved looking at one screen and typing on a
separate keyboard attached to another screen.

The introduction of terminal emulation software provided a solution to this
dilemma. It runs on the PC, connects to the mainframe, and seems to behave
just like a dedicated terminal, however it can move data between the mainframe
and the applications running on the PC.

As the PC evolved, and as graphical interfaces became the norm, emulation
products became more and more sophisticated, going far beyond simple “emu-
lating”. Aviva Inc. was one of the pioneers of this movement.

The second technology that caused yet a rethinking of the mainframe access
was the Internet. Mainframe connectivity used to be governed by a complex
and proprietary network architecture known as SNA, which was incompatible
with the Internet. Obviously it had to evolve to the new worldwide network
protocol: TCP/IP.

SNA was gradually replaced by TN3270, a protocol that encapsulates the
mainframe presentation data in a Telnet-like envelope.

As the browser and HTML became
the preferred way of viewing data,
the inadequacy of the legacy user
interface became unbearable.
Therefore the “rejuvenation” era
began. The original “green screens”
were processed and radically trans-
formed to a user friendly interface on
a server and sent to the browser, or
later to other devices, such as PDAs
and mobile phones. During the trans-
formation, server side Java technolo-
gies (servlets, JSP) started to play a
role, although any other CGI-like
technology would do it.

Java applets were also very much
en-vogue. Emulation packages are
known to be complex to configure,
deploy and upgrade. A minor change
of the configuration or a simple soft-
ware upgrade could involve hours of
working on thousands of computers.
How nice it would be to handle all
of these activities on a central Web
server!

Java to Rescue
“Aviva for Java™”, the secure host
access solution for Java enabled Web
browsers, dramatically increases the
efficiency and productivity of admin-
istration. It enables the user to point
the browser to a page and get the
newly configured and upgraded
package as a Java applet.

As electronic commerce started to
flourish and as the “big iron” was
involved in almost every transaction,
the need to integrate mainframe
based data with data from other
sources emerged. As a result of such
integration, the multitude and intrica-
cies of the various data sources are
completely hidden behind attractive
Web applications from the user.

Java and in particular J2EE, is a prime
candidate for the task for all the
well-known reasons such as its high
productivity, portability and security.
Servlets, JSP, EJB, JDBC are all proven

63| programmersparadise.com | 800-445-7899 |

Java Corner
Unleashing the “Big Iron”
Power with Java
by Aviva Inc.

63_64_JavaCorner.qxd 6/11/03 12:37 PM Page 63

64 | 800-445-7899 | programmersparadise.com |

Ja
va

 C
or

ne
r technologies for building robust and plat-

form independent applications. What about
mainframe connectivity? There were no
standard APIs and tools facilitating this
difficult but important task.

A mainframe connectivity toolkit for
Java–Aviva Host Integration SDK™

Aviva, with its vast experience in main-
frame connectivity, realized that tools and
APIs for programmatic mainframe access
were needed to complete the facilities
offered by Java for building e-commerce
applications. Such tools and APIs are
missing not only from Java, but also from
all the competing platforms and languages.
It was for these fundamental reasons that
Aviva developed Host Integration SDK™
(SDK™).

Some may question, why a Java and not a
.NET toolkit? Aviva considered Java a more
promising platform not only for the well
known reasons but also for one important
element that has entered into the equation:
IBM’s firm commitment to Java. IBM
pushed new life into the “big iron” by fully
supporting Java on the mainframe. Today,
mainframes are no longer dinosaurs, they
run Unix and Linux sub-systems, they come
with state-of-the-art Java VMs, feature pow-
erful J2EE compliant application servers
and so on. While non-Java solutions would
allow applications running on other
machines to tap mainframe data (using
TCP/IP), Java solutions can run directly
on the mainframe itself.

It is really a user’s choice to select where
the application or its discrete components
will run. Some may prefer a distributed
solution to avoid intruding or overloading
the mainframe however others will choose
to run on the mainframe for its many
advantages: the power and legendary relia-
bility of the “big iron”, simplified topology,
reduced network maintenance and so on.

The SDK™ is a comprehensive solution for
providing mainframe connectivity to Java
applications. While the emphasis is on
server-side applications, the tools and API’s

are “container neutral”. It means that the code will function properly if
used from any type of Java application, in the most general sense, be it a
servlet, a stand-alone application or even an applet.

The same host connectivity components offered to developers by the
SDK™, have been used by Aviva to build an end-user type of product:
Aviva for Java™. The fact that the SDK™ components have been used in
such a commercial product for a long time makes us very confident with
respect to their stability and completeness. What is in the SDK™?

•A rich set of versatile APIs that encapsulate the mainframe connectivity
stack, including SSL. The various APIs are tailored for specific needs.
The Aviva Class Library is the core of all other APIs and is geared
towards server side applications. Aviva XML API is geared towards
alternate presentations (for instance HTML) and B2B applications. Aviva
Open Host Interface Objects are our contribution to IETF standardiza-
tion efforts. Aviva Beans add a GUI on top of ACL, facilitating Rapid
Application Development and IDE integration. Aviva Beans are more
client side oriented, but invaluable during development and trou-
bleshooting of server side applications (Everything is visualized!)

•Powerful development tools, including the Aviva Developer Assistant.
Aviva realized that writing mainframe data access code is a challenging
task, even when provided with powerful and elegant APIs. Aviva
Developer Assistant is a code generation tool that records your main-
frame screen navigations and creates an elegant abstraction: a hostlet.
The hostlet is a Java class (actually a Java bean) that hides the complexi-
ties of a specific mainframe application screen scraping process. For
instance, manipulating a CustomerInfoHostlet will consist essentially in
instantiating it, providing the connectivity parameters, calling a
setCustomerId() method, followed by executeNavigation(), followed by
getCreditLimit(), getAccountBalance() a.s.o. Besides generating the
hostlet, Aviva Developer Assistant generates your choice of fully func-
tional calling code (prototypes): stand-alone application, servlet, JSP,
RMI server, EJB, Oracle portlet or web service. The process is driven
by templates, which are easy to create and modify. Therefore users can
create their own templates.

Conclusion
Aviva Developer Assistant brings to the application developer the missing
link: the link with the mainframe. This link is mostly ignored in mainstream
Java literature and neglected because of its complexity. Almost every
developer facing the need to integrate the mainframe data had to struggle
and reinvent the wheel. Aviva believes that ignoring the mainframe link
will not make it disappear; therefore we provide the Java developer
community the means to access and integrate this essential data source.
The Aviva Host Integration SDK™ provides developers with libraries
that are pure Java, truly platform independent, highly scalable and non-
intrusive. The developer decides the architecture of his own application
(which probably does much more than accessing mainframe data)
and the destination platform, while the SDK™ components will seamlessly
just fit in.

As a Senior Software Architect for Aviva Inc, Eugene Aresteanu is playing a major role
of defining the technical architecture for Aviva software products and solutions. His
experience ranges from hands-on design, programming, product road mapping, and
architecture. For the past 15 years at Aviva, Mr. Aresteanu pioneered and led the archi-
tecture, design, and development of the Aviva software products for various platforms.
Mr. Aresteanu is a strong believer in Java’s promise “Write once, run everywhere” and he
thinks Java has a great potential in mainframe access field.

Most Popular
Development Tools Reseller!

63_64_JavaCorner.qxd 6/11/03 12:37 PM Page 64

